Giáo trình Công nghệ protein

Chương 1
Mở đầu
I. Khái quát chung về protein
1.1. Những đặc trưng chung của nhóm chất protein
Protein được phát hiện lần đầu tiên ở thế kỷ XVIII (1745 bởi
Beccari); mới đầu được gọi la allbumin (lòng trắng trứng). Mãi đến năm
1838 , Mulder lần đầu tiên đưa ra thuật ngữ protein (xuất phát từ chữ Hy
lạp proteos nghĩa là “đầu tiên”, “quan trọng nhất”. Biết được tầm quan
trọng và nhu cầu xã hội về protein, đến nay nhiều công trình nghiên cứu
và sản xuất hợp chất này đã được công bố, đã đem lại nhiều ý nghĩa hết
sức to lớn phục vụ cho nhân loại. Vì vậy, nhiều nhà khoa học trên thế giới
đã vinh dự nhận được giải thưởng Nobel về các lĩnh vực nghiên cứu liên
quan đến protein.
Như đã biết protein là hợp chất hữu cơ có ý nghĩa quan trọng bậc
nhất trong cơ thể sống. Về mặt số lượng, nó chiếm không dưới 50% trọng
lượng khô của tế bào. Về thành phần cấu trúc, protein được tạo thành chủ
yếu từ các amino acid qua liên kết peptide. Cho đến nay người ta đã thu
được nhiều loại protein ở dạng sạch cao có thể kết tinh được và đã xác
định được thành phần các nguyên tố hoá học, thông thường trong cấu trúc
của chúng gồm bốn nguyên tố chính là C H O N với tỷ lệ C ≈ 50%, H ≈
7%, O ≈ 23% và N ≈ 16%. Đặc biệt tỷ l ệ N trong protein khá ổn định.
Nhờ tính chất này để định lượng protein theo phương pháp Kjeldahl,
người ta tính lượng N rồi nhân với hệ số 6,25. Ngoài ra trong protein còn
gặp một số nguyên tố khác như S ≈0-3% và P, Fe, Zn, Cu...
Khối lượng phân tử, ký hiệu là Mr (được tính bằng Dalton)* của
các loại protein thay đổi trong những giới hạn rất rộng, thông thường từ
hàng trăm cho đến hàng triệu. Ví dụ: insulin có khối lượng phân tử bằng
5.733, glutamat-dehydrogengenase trong gan bò có khối lượng phân tử
bằng 1.000.000 (bảng 1.1).
1.2. Ý nghĩa khoa học và thực tiễn của nhóm chất protein
Từ lâu, đã biết rằng protein tham gia mọi hoạt động sống trong cơ
thể sinh vật, từ việc tham gia xây dưng tế bào, mô, đến tham gia hoạt động
xúc tác và nhiều chức năng khác v.v...Ngày nay, khi hiểu rõ vai trò to lớn
của protein đối với cơ thể sống, người ta càng thấy rõ tính chất duy vật và
ý nghĩa của định nghĩa thiên tài của Anghen F. : “sống là phương thức tồn
tại của những thể protein”. Với sự phát triển của khoa học, vai trò và ý
1
nghĩa của protein đối với sự sống càng được khẳng định. Cùng với acid
nucleic, protein là cơ sở vật chất của sự sống. 
pdf 89 trang thiennv 10/11/2022 3700
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Công nghệ protein", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfgiao_trinh_cong_nghe_protein.pdf

Nội dung text: Giáo trình Công nghệ protein

  1. 9 hợp protein. Do protein vẫn có cấu trúc bình thường mà chỉ thay đổi về số lượng nên chúng vẫn có chức năng bình thường và chỉ thay đổi về mức độ hoạt động. Trong trường hợp là protein enzyme thì những lệch lạc về số lượng enzyme sẽ dẫn đến những rối loạn dây chuyền chuyển hoá. b) Những biến đổi về chất lượng protein: Đó là những rối loạn về cấu trúc protein do gene bi biến đổi, dẫn đến cấu trúc protein thay đổi kéo theo sự thay đổi chức năng sinh học của protein đó. Ví dụ, sự biến đổi cấu trúc của hemoglobin (Hb) là protein có chúc năng vận chuyển oxygen trong máu dẫn đến bệnh thiếu máu, hay như bệnh thiếu máu do hồng cầu hình lưỡi liềm 3.4.4. Cấu trúc và chức năng của protein miễn dịch. Tham gia vào hệ thống miễn dịch có nhiều cơ quan, nhiều loại tế bào và đặc biệt nhiều loại protein thực hiện các chức năng riêng biệt tạo nên hiệu quả miễn dịch đặc hiệu và không đặc hiệu. Các protein miễn được nhắc đến nhiều hơn cả là các kháng thể, bổ thể và các cytokine. a) Các kháng thể (antibody). Tất cả các phân tử kháng thể đã được chứng minh là các globulin có chức năng miễn dịch (viết tắt là Ig: Immunoglobulin) và có bản chất là glycoprotein. Các kháng thể được chia thành 5 lớp. Tuỳ theo cấu trúc và chức năng miễn dịch là IgG, IgA, IgM, IgD, IgE. Cấu trúc của phân tử kháng thể được hình thành từ hai loại chuỗi polypeptide là chuỗi nặng (ký hiệu: H=Heavy chain) có khối lượng phân tử từ 53-59 kDa và chuỗi nhẹ (ký hiệu:L=Light chain) có khối lượng phân tử 22-26 kDa. Cả bốn chuỗi được gắn với nhau bằng cầu disunfid (S-S). Trung tâm hoạt động là phần liên kiết với kháng nguyên (hình 1.2) nằm ở vùng tận cùng N của chuỗi nặng và chuỗi nhẹ có cấu trúc chỉ khoảng 8-10 amino acid. Các phân tử Ig có đặc tính hoạt động miễn dịch theo hai chức năng: - Có khả năng liên kết với kháng nguyên ít nhất ở hai vị trí tiếp nhận đối với kháng nguyên nhờ sự biến đổi kỳ diệu của phần tận cùng NH2 trên phân tử kháng thể. - Phần tận cùng COOH của phân tử kháng thể có khả năng thực hiện một số lớn các hoạt động sinh học dưới ảnh hưởng của sự liên kết với thụ thể trên bề mặt của tế bào. Tất cả các kháng thể đều có cùng một cấu trúc phân tử nhưng khác nhau ở mức độ của vùng liên kết với kháng nguyên. Nhìn chung phân tử kháng thể được chia làm hai phần: phần Fab là phần liên kết với kháng nguyên, phần Fc là phần dễ kết tinh phản ứng với các tế bào của hệ thống miễn dịch qua thụ thể của các tế bào. Dùng
  2. 10 enzyme papain hay pepsin có thể cắt kháng thể thành hai mảnh Fab và Fc, ’ hoặc F(ab )2 tương ứng. chuỗi nhẹ Vị trí liên kết Papain cắt Pepsin cắt chuỗi nặng Vị trí liên kết H ình 1.2 Cấu trúc chung của phân tử kháng thể (Ig) b) Bổ thể (complement). Là những protein huyết tương phản ứng với nhau nhằm tấn công các dạng tác nhân gây bệnh. Hệ thống bổ thể bao gồm khoảng 40 protein có chức năng đáp ứng miễn dịch, chống vi sinh vật và đáp ứng viêm. Về chức năng, các kháng thể tương tác đặc hiệu với tác nhân truyền nhiễm bệnh, còn hệ thống bổ thể được cố định lên tất cả các kháng thể để thực hiện chức năng miễn dịch. Các thành phần của bổ thể tương tác giữa chúng với nhau và các yếu tố khác của hệ thống miễn dịch. c) Các cytokine. Là toàn bộ các phân tử được tiết ra bởi các tế bào của hệ thống miễn dịch, tham gia vào hoạt động tín hiệu giữa các tế bào trong hoạt động đáp ứng miễn dịch. Tất cả các cytokine đều có bản chất protein hay glycoprotein và được phân loại như sau: - Các interferons (IFN): có các dạng α-IFN, β-IFN và γ-IFN, có chức năng ngăn ngừa của một số virus gây bệnh. - Các interleukin (IL): có các dạng từ IL1 đến IL 13, chúng có nhiều chức năng, nhưng chủ yếu là kiểm tra sự biệt hoá và sinh sản tế bào. - Các yếu tố kích thích quần lạc (CSF): có chức năng kiểm tra sự phân chia và sinh sản của các tế bào nguồn và các tế bào máu sơ khai.
  3. 11 - Các chất dẫn truyền sinh học (mediator): là những protein của giai đoại đáp ứng miễn dịch cấp tính. 3.4.5. Cấu trúc và chức năng của protein vận chuyển. Trong cơ thể có những protein làm nhiệm vụ vận chuyển như + hemoglobin, mioglobin, hemocianin vận chuyển O2, CO2 và H đi khắp các mô, các cơ quan trong cơ thể. Ngoài ra còn có nhiều protein khác như lipoprotein vận chuyển lipid, ceruloplasmin vận chuyển đồng (Cu) trong máu v.v Một trong những protein làm nhiệm vụ vận chuyển được nhắc đến nhiều nhất đó là hemoglobin. Phân tử được cấu tạo tử bốn tiểu đơn vị (subunit), hai tiểu đơn vị α và hai tiểu đơn vị β. Hình 1.3 Cấu trúc của phân tử hemoglobin Tiểu đơn vị β của Hemoglobin H ình 1.4 So sánh cấu trúc tiểu đơn vị β của hemoglobin với leghemoglobin và myoglobin.
  4. 12 Mỗi tiểu đơn vị nối với một heme bằng liên kết không phải cộng hoá trị. Khi so sánh với protein cùng chức năng như myoglobin cơ và leghemoglobin thực vật là những protein có cấu trúc chỉ một tiểu đơn vị (monomer) thấy rằng các tiểu đơn vị cấu trúc khá giống nhau (hình: 1.3, 1.4 ) 3.4.6. Cấu trúc chức năng và vai trò của lectin. Lectin là những protein hay glycoprotein không phải nguồn gốc miễn dịch, lectin có khả năng ngưng kết với nhiều loại tế bào, cũng như nhiều loại đường hoặc các hợp chất chứa đường có tính chất chọn lọc. Hầu hết lectin có cấu trúc bậc 4, với khối lượng phân tử giao động trong phạm vi khá rộng từ hàng ngàn cho đến hàng trăm ngàn Dalton. Ví dụ: lectin từ rễ cây Urtica dioica (họ gai Urticaceae) có Mr=8,5 KDa trong khi đó loài sam biển châu Á (Tachypleus tridentatus) có Mr=700.KDa. Về chức năng, người ta thấy rằng mặc dù lectin không phải là kháng thể chống lại tác nhân gây bệnh nhưng chúng có vai trò bảo vệ cơ thể nhờ tương tác với màng tế bào và gây ngưng kết tế bào của chúng. Họ đã khẳng định rằng lectin có khả năng gắn các tế bào vi khuẩn và kháng nguyên lạ với các đại thực bào, do vậy mà vi khuẩn và kháng nguyên lạ bị đào thải ra khỏi cơ thể. Ngoài ra có những lectin còn có khả năng kích thích sự phân chia và biệt hoá tế bào. Đồng thời người ta cũng phát hiện được nhiều lectin có cả hoạt tính của enzyme, ví dụ lectin hoạt tính khá mạnh, được tách ra từ hạt đậu mùng, có khối lượng phân tử khoảng 16.KDa có cả hoạt tính của enzyme α-galactosidase. 3.4.7. Những chức năng khác của protein. Trong cơ thể ngoài các protein đảm nhận chức năng xúc tác như enzyme, chức năng vận chuyển như hemoglobin, mioglobin, lipoprotein, và chức năng bảo vệ như các kháng thể miễn dịch, các protein độc tố như enzyme nọc rắn, lectin v.v , protein còn tham gia nhiều chức năng quan trọng khác như: - Các protein làm nhiệm vụ kích thích điều hoà quá trình trao đổi chất như các hormon - Các protein làm nhiệm vụ cấu trúc như vỏ virus, màng tế bào, colagen ở da, fibrolin ở tơ - Các protein làm nhiệm vụ co rút như myosin, actin ở sợi cơ - Các protein làm nhiệm vụ dự trữ như casein của sữa, ovalbumin của trứng, v.v
  5. 13 TÀI LIỆU THAM KHẢO 1.Trần Thị Ân, Đái Duy Ban, Nguyễn Hữu Chấn, Đỗ Đình Hồ, Lê Đức Trình. 1980. Hoá sinh học. NXB Y học 2.Phạm Thị Trân Châu, Trần Thị Áng. 1999. Hoá sinh học. NXB Giáo dục 3.Phạm Thị Trân Châu, Lã Minh Châu, Lâm Chi, Nguyễn Lân Dũng, Đỗ Đình Hồ, Lê Ngọc Tú. 1983. Những hiểu biết mới về enzim. Tập 8. NXB KH & KT Hà nội. 4. Đỗ Đinh Hồ, Đái Duy Ban, 1977. Sinh học phân tử và cuộc cách mạng trong sinh học, NXB KH& KT. Hà nội 5. Đỗ Ngọc Liên. 2004. Miễn dịch học cơ sở. NXB Đại học Quốc gia Hà nội (in lần thứ 2). 6.Fersht A.,1998, Structure and Mechanism in Protein Science, W. H. Freeman, 3rd Rev Edit. 7.Lehringer A.L., 2004. Principle of Biochemistry, 4th Edition. W.H Freeman, 2004 8. Liebler D.C., 2002. Introduction to proteomics. Humana Press Inc. Totuwa, New Jersey. 9. Lodish H., 2003. Molecular Cell Biology. 5th ed.W.H Freeman. 10. Virella G.,1998. Introduction to medical immunology, Marcel Dekker, Inc. New York. Basel. Hong kong. 4th. ed.
  6. 14 Chương 2 Amino acid - Đơn vị cấu tạo Protein I. Thành phần tính chất lý- hoá của amino acid 1.1. Thành phần và cấu tạo của amino acid Protein là polymer của các amio acid nối với nhau bằng các liên kết cộng hoá trị là liên kết peptide. Protein có thể bị thuỷ phân tạo thành các amino acid tự do bằng nhiều phương pháp khác nhau. Người ta đã xác định protein được cấu trúc từ 20 loại amino acid khác nhau. Amino acid là chất hữu cơ mà phân tử chứa ít nhất một nhóm carboxyl (COOH) và ít nhất một nhóm amino (NH2), trừ prolin chỉ có nhóm NH (thực chất là một acid imin). Trong phân tử amino acid đều có các nhóm COOH và NH2 gắn với carbon ở vị trí α. Hầu hết các amino acid thu nhận được khi thuỷ phân protein đều ở dạng L-α amino acid. Như vậy các protein chỉ khác nhau ở mạch nhánh, hay còn gọi là chuỗi bên (thường được ký hiệu: R). Hình: 2.1 Công thức cấu tạo chung của các amino acid 1.2. Phân loại amino acid 1.2.1. Các quan điểm về phân loại amino acid. Hiện nay có nhiều người phân loại amino acid theo nhiều kiểu khác nhau, mỗi kiểu sắp xếp đều có ý nghĩa và mục đích riêng. Tuy nhiên, họ đều dựa trên cấu tạo hoá học hoặc một số tính chất của gốc R. Ví dụ: có người chia các amino acid thành 2 nhóm chính là nhóm mạch thẳng và nhóm mạch vòng. Trong nhóm mạch thẳng lại tuỳ theo sự có mặt của số nhóm carboxyl hay số nhóm amino mà chia ra thành các nhóm nhỏ, nhóm amino acid trung tính (chứa một nhóm COOH và một nhóm NH2); nhóm amino acid có tính kiềm (chứa một nhóm COOH và hai nhóm NH2); nhóm amino acid có tính acid (chứa hai nhóm COOH và một nhóm NH2). Trong nhóm mạch vòng lại chia ra thành nhóm đồng vòng hay dị vòng v.v Có người lại dựa vào tính phân cực của gốc R chia các amino acid thành 4 nhóm: nhóm không phân cực hoặc kỵ nước, nhóm phân cực nhưng không tích điện, nhóm tích điện dương và nhóm tích điện âm.
  7. 15 Ở đây xin được giới thiệu cách phân loại các amino acid một cách chung nhất. Theo cách này dựa vào gốc R các amino acid được chia làm 5 nhóm: Nhóm I. Gồm 7 amino acid có R không phân cực, kỵ nước, đó là: glycine, alanine, proline, valine, leucine, isoleucine và methionine. Hình: 2.2 Công thức cấu tạo các amino acid nhóm I Nhóm II Gồm 3 amino acid có gốc R chứa nhân thơm, đó là phenylalanine, tyrosine và tryptophan. Hình: 2.3 Công thức cấu tạo các amino acid nhóm II
  8. 16 Nhóm III. Gồm 5 amino acid có gốc R phân cực, không tích điện, đó là serine, threonine, cysteine, aspargine và glutamine. Hình: 2.4 Công thức cấu tạo các amino acid nhóm III Nhóm IV. Gồm 3 amino acid có R tích điện dương, đó là lysine, histidine và arginine. Hình: 2.5 Công thức cấu tạo các amino acid nhóm IV
  9. 17 Nhóm V. Gồm 2 amino acid có gốc R tích điện âm, đó là aspartate và glutamate. Hình: 2.6 Công thức cấu tạo các amino acid nhóm V 1.2.2. Các amino aicd thường gặp. Các amino acid thường gặp là những amino acid thường có mặt trong thành phần của các loại protein. Chúng có khoảng 20 loại và được thu nhận khi thuỷ phân protein. Các loại amino acid này có tên gọi, khối lượng phân tử và ký hiệu được trình bày trên bảng 2.1. 1.2.3. Các aminno acid không thay thế, hay cần thiết. Các amino acid được hình thành bằng nhiều con đường khác nhau. Như đã biết, trong phân tử protein có khoảng 20 loại amino acid, tuy nhiên trong cơ thể người và động vật không tổng hợp được tất cả các loại đó mà phải đưa từ ngoài vào qua thức ăn. Những amino acid phải đưa từ ngoài vào đó gọi là các amino acid không thay thế. Ngày nay người ta biết được có khoảng 8-10 loại amino acid không thay thế bao gồm: Met, Val, Leu, Ile, Thr, Phe Trp, Lys, Arg và His, ngày nay người ta còn xem Cys cũng là một amino acid không thay thế. 1.2.4. Các amino acid ít gặp. Ngoài các amino acid thường gặp ở trên, trong phân tử protein đôi khi còn có một số amino acid khác, đó là những loại ít gặp. Các amino acid này là dẫn xuất của những amino acid thường gặp như: trong phân tử colagen có chứa 4-hydrogenxyproline là dẫn xuất của proline, 5- hydrogenxylysine là dẫn xuất của lysine v.v Mặt khác, mặc dù không có trong cấu trúc protein, nhưng có hàng trăm loại amino acid khác chúng có thể tồn tại ở dạng tự do hoặc liên kết với hợp chất khác trong các mô và tế bào, chúng có thể là chất tiền thân hay là các sản phẩm trung gian của quá trình chuyển hoá trong cơ thể.
  10. 18 Bảng 2.1 Các amino acid thường gặp Tên amino Tên amino acid gọi theo danh pháp Tên Ký Khối acid hoá học viết hiệu lượng tắt (Mr) Glycine α-aminoacetic Gly G 75 Alanine α-aminoprpionic Ala A 89 Proline α-pirolidincarboxylic Pro P 115 Valine α-aminoiaovaleric Val V 117 α Leucine -aminonoisocaproic Leu L 131 α β Isoleucine -amino- -metylvaleric Ile I 131 α γ Methionine -amino- -metyltiobutiric Met M 149 α β Phenylalanine -amino- -phenylpropionic Phe F 165 α-amino-β- Tyrosine Tyr Y 181 hydrogengenxyphenylpropionic Tryptophan α-amino-β-idolylpropionic Trp W 204 Serine α-amino-β-hydoxypropionic Ser S 105 Threonine α-amino-β-hydrogengenxybutiric Thr T 119 Cysteine α-amino-β-tiopropionic Cys C 121 Aspargine amid của aspartate Asn B 132 Glutamine amid của glutamate Gln Q 146 Lysine α,ε diaminocaproic Lys K 146 Histidine α-amino-β-imidazolpropionic His H 155 Arginine α-amino-δ-guanidinvaleric Arg R 174 Aspartate α-aminosucinic Asp D 133 Glutamate α-aminoglutarate Glu E 147 1.3. Màu sắc và mùi vị của amino acid Các amino acid thường không màu, nhiều loại có vị ngọt kiểu đường như glycine, alanine, valine, serine histidine, triptophan; một số loại có vị đắng như isoleucine, arginine hoặc không có vị như leucine. Bột ngọt hay còn gọi là mì chính là muối của natri với acid glutamic (monosodium glutamate). 1.4. Tính tan của amino acid Các amino acid thường dễ tan trong nước, các amino acid đều khó tan trong alcohol và ether (trừ proline và hydrogenxyproline), chúng cũng dễ hoà tan trong acid và kiềm loãng (trừ tyrosine).
  11. 19 1.5. Biểu hiện tính quang học của amino acid Các amino acid trong phân tử protein đều có ít nhất một carbon bất đối (trừ glycine) vì thế nó đều có biểu hiện hoạt tính quang học, nghĩa là có thể làm quay mặt phẳng của ánh sáng phân cực sang phải hoặc sang trái. Quay phải được ký hiệu bằng dấu (+), quay trái được ký hiệu bằng dấu (-). Góc quay đặc hiệu của amino acid phụ thuộc vào pH của môi trường. Tuỳ theo sự sắp xếp trong cấu trúc phân tử của các nhóm liên kết với carbon bất đối mà các amino acid có cấu trúc dạng D hay L (hình 2.7) gọi là đồng phân lập thể. Số đồng phân lập thể được tính theo 2n (n là số carbon bất đối) Hình 2.7 Đồng phân lập thể của alanine Hầu hết các amino acid khác hấp thụ tia cực tím ở bước sóng (λ) khoảng từ 220 - 280 nm. Đặc biệt cùng nồng độ 10-3M, trong bước sóng khoảng 280 nm tryptophan hấp thụ ánh sáng cực tím mạnh nhất, gấp 4 lần khả năng hấp thụ của tyrosine (hình 2.8) và phenylalanine là yếu nhất. Phần lớn các protein đều chứa tyrosine nên người ta sử dụng tính chất này để định lượng protein
  12. 20 λ (nm) Hình 2.8 Phổ hấp thụ ánh sáng cực tím của triptophan và tyrosine 1.6. Tính lưỡng tính của amino acid Trong phân tử amino acid có nhóm carboxyl -COOH nên có khả + năng nhường proton (H ) thể hiện tính acid, mặt khác có nhóm amin- NH2 nên có khả năng nhận proton nên thể hiện tính base. Vì vậy amino acid có tính chất lưỡng tính. Trong môi trường acid, amino acid ở dạng cation (tích điện dương), nếu tăng dần pH amino acid lần lượt nhường proton thứ nhất chuyển qua dạng lưỡng cực (trung hoà về điện), và tiếp tục tăng pH amino acid sẽ nhường proton thứ hai chuyển thành dang anion (tích điện âm). Vì vậy đôi khi người ta coi nó như một di-acid. cation lưỡng cực anion Hình 2.9 Tính lưỡng tính của amino acid + + Tương ứng với độ phân ly H của các nhóm COOH và NH3 có các trị số pK1 và pK2 (biểu thị độ phân ly của các nhóm được 1/2). Từ đó người ta xác định được pHi (pI= pH đẳng điện) = pK1 + pK2 / 2. Ví dụ: khi hoà tan glycine vào môi trường acid mạnh thì hầu như glycine đều ở dạng
  13. 21 cation. Nếu tăng dần lượng kiềm, thu được đường cong chuẩn độ. Trên đường cong chuẩn độ thấy rằng: glycine lần lượt nhường 2 proton trước tiên chuyển sang dang lưỡng tính và sau cùng chuyển thành dạng anion Độ phân ly của H+ Hình 2.10 Đường cong chuẩn độ của glycine nồng độ 1 M ở 25OC Tương đương độ phân ly của nhóm COOH được một nửa có trị số + pK1= 2,34 và độ phân ly của NH3 được một nửa có trị số pK2= 9,60. Như vậy ta có 2,34 + 9,60 pHi = = 5,97 2 + - Mặt khác tại pK1 + 2 sự phân ly H của nhóm COO glycine là 99%, + chỉ 1% ở dạng COOH và ở pK2 -2 dạng NH3 là 99%, chỉ 1% ở dạng NH2. Như vậy trong vùng pH từ pK1 + 2 đến pK2 -2, phân tử glycine chủ yếu ở dạng lưỡng tính và kết quả ta có một vùng đẳng điện. Ngoài ra các amino acid trong gốc R có thêm nhóm COOH hay NH2 sự phân ly của chúng sẽ có thêm một trị số phân ly nữa-pKR (xem bảng 2.2)
  14. 22 1.7. Các phản ứng hoá học của amino acid Các amino acid đều có nhóm NH2 và COOH liên kết với Cα , vì vậy chúng có những tính chất hoá học chung. Mặt khác các amino acid khác nhau bởi gốc R, vì vậy chúng có những phản ứng riêng biệt. Người ta chia các phản ứng hoá học của amino acid thành 3 nhóm: Bảng: 2.2 Các trị số pK của các amino acid thường gặp Tên các Các trị số pK + amino acid pK1(của COOH) pK2(của NH 3) pKR(của R) pI Glycine 2,34 9,60 5,97 Alanine 2,34 9,60 6,01 Proline 1,99 10,96 6,48 Valine 2,32 9,62 5,97 Leucine 2,36 9,60 5,98 Isoleucine 2,36 9,68 6,02 Methionine 2,28 9,21 5,74 Phenylalanine 1,83 9,13 5,48 Tyrosine 2,20 9,11 10,07 5,66 Tryptophan 2,38 9,39 5,89 Serine 2,21 9,15 5,68 Threonine 2,11 9,62 5,87 Cysteine 1,96 10,28 8,18 5,07 Aspargine 2,02 8,80 5,41 Glutamine 2,17 9,13 5,65 Lysine 2,18 8,95 10,53 9,74 Histidine 1,83 9,17 6,00 7,59 Arginine 2,17 9,04 12,48 10,76 Aspartate 1,88 9,60 3,65 2,77 Glutamate 2,19 9,67 4,25 3,22 a) Phản ứng của gốc R. Do các amino acid có cấu tạo gốc R khác nhau, nên người ta có thể dùng để xác định từng amino acid riêng rẽ nhờ phản ứng đặc trưng của nó, ví dụ phản ứng oxy hoá khử do nhóm SH của cysteine, phản ứng tạo muối
  15. 23 do các nhóm COOH hay NH2 của glutamte hay lysine, phản ứng tạo ester do nhóm OH của tyrosine v.v b) Phản ứng chung. Là phản ứng có sự tham gia của cả hai nhóm α- COOH và α- NH2 . Khi phản ứng với ninhydrin trong điều kiện đun nóng tạo thành CO2 , NH3 aldehyde và nihydrin bi khử, cuối cùng tạo nên sản phảm có màu xanh tím. c) Phản ứng riêng biệt Có thể chia các phản ứng riêng biệt theo hai nhóm α- COOH và α- NH2 -Các phản ứng của nhóm α- COOH . Ngoài các phản ứng của nhóm COOH thông thường tạo ester, tạo amid, tạo muối thì nó còn có những phản ứng đạc trưng khác như có thể bị khử thành hợp chất rượu amino dưới sự xúc tác của NaBH4. R-NH2CH-COOH R-NH2CH-CH2OH Nhóm COOH có thể tạo thành phức aminoacyl-adenylate trong phản ứng hoạt hoá amino acid để tổng hợp protein, hay có thể loại CO2 gặp rất nhiều trong quá trình thoái hoá amino acid, tạo các dẫn xuất amin có hoạt tính sinh học cao như histamine, sevôtnine. - Các phản ứng của nhóm α- NH2 . Nhiều phản ứng của nhóm amino được dùng để xác định các chỉ tiêu của amino acid như: Để định lượng amino acid người ta cho phản ứng với HNO2 để giải phóng N2 và định lượng nitrogen R-NH2CH-COOH + HNO2 R-OHCH-COOH +N2 +H2O Để định lượng amino acid người ta cho phản ứng với formaldehyde tạo thành base schif. R-CH-COOH R-CH-COOH NH2 + HCHO N = CH2 + H2O + H Sau đó dung NaOH (hoặc KOH) để chuẩn độ nhóm COOH của aminoacid Để xác định amino acid đầu N-tận cùng người ta cho tác dụng với 2- 4 dinitrofluobenzen (phản ứng sanger) hay phenyliothiocyanate (phản ứng Edman). Sau đó xác định amino acid N-tận cùng tách biệt khi chúng ở dạng dẫn xuất với hai loại hoá chất trên. II. Thu nhận amino acid bằng thủy phân protein 2.1. Thủy phân bằng acid
  16. 24 Để thu nhận các amino acid phương pháp thường được dùng nhiều nhất là thuỷ phân bằng acid HCL 6N dư thừa ở nhiệt độ 100-120oC trong khoảng 24 giờ. Sản phẩm thu được chủ yếu là các amino acid tự do dưới dạng hydrogenclorate. Một số amino acid như serine và threonine bị phá huỷ một phần, tryptophan bị phá huỷ hoàn toàn, glutamine và asparagine + phân ly thành acid glutamic, acid aspartic và NH4 . 2.2. Thuỷ phân bằng kiềm Người ta cũng có thể thu nhận các amino acid bằng phương pháp thuỷ phân với NaOH, bằng cách đun nóng trong nhiều giờ. Sản phẩm thu được hầu hết là các amino acid nhưng đều bị racemic hóa, các amino acid cysteine, serine và treonine bị phá huỷ nhưng tryptophan không bị phá huỷ. Vì vậy, phương pháp thuỷ phân bằng kiềm thường chỉ dùng để xác định tryptophan. 2.3. Thuỷ phân bằng enzyme Để thu nhận chế phẩm amino acid ngày nay việc thuỷ phân bằng enzyme được ứng dụng rộng rãi trong nhiều lĩnh vực khoa học khác nhau bởi sử dụng enzyme có nhiều ưu điểm như đã nói ở trên. Các enzyme thuỷ phân protein để tạo thành các amino acid hay các các peptid có phân tử thấp được gọi chung là peptidhydrogenlase. Có nhiều loại peptidhydrogenlase, chúng được phân biệt nhau bởi tính đặc hiệu khác nhau với liên kết peptid. Một số loại cắt đứt liên kết peptid ở đầu tận cùng của chuỗi polypeptide được gọi là exopeptidase như carboxypeptidase phân giải liên kết peptide đầu C tận cùng, aminopeptidase phân giải liên kết peptide đầu N tận cùng. Một số khác chỉ cắt đứt các liên kết peptide ở giữa của chuỗi polypeptide được gọi là các endopeptidase như pepsin, tripsin, v.v 2.5. Các phương pháp theo dõi và xác định tốc độ thuỷ phân bằng enzyme Tốc độ thuỷ phân protein của enzyme phụ thuộc vào nhiều yếu tố như nồng độ enzyme, nồng độ cơ chất, các chất kìm hãm, các chất kích hoạt, nhiệt độ và pH của môi trường phản ứng. Để xác định tốc độ thủy phân của enzyme người ta không định lượng enzyme một cách trực tiếp mà thường xác định gián tiếp thông qua hoạt độ của enzyme. Khi thực hiện phản ứng, enzyme có thể làm thay đổi các tính chất vật lý, hoá học, v.v của hỗn hỗn hợp phản ứng. Vì vậy, theo dõi những biến đổi thông qua sự định lượng cơ chất bị mất đi hay sản phẩm của phản ứng enzyme được tạo thành có thể biết được chính xác mức độ hoạt động của enzyme. Người ta chia ra thành ba nhóm phương pháp: a) Xác định lượng sản phẩm tạo thành hay lượng cơ chất bị mất đi trong một thời gian nhất định, ứng với lượng enzyme nhất định.