Bài giảng Kiến trúc máy tính - Chương 2: Kiến trúc bộ lệnh - Hà Lê Hoài Trung

1. Giới thiệu
2. Các phép tính
3. Toán hạng
4. Số có dấu và không dấu
5. Biểu diễn lệnh
6. Các phép tính Logic
7. Các lệnh điều kiện và nhảy
8. Chuyển đổi và bắt đầu một chương trình
9. Giải pháp cho địa chỉ và biến immediates 32-bit trong
kiến trúc MIPS
10. Chuyển đổi và bắt đầu một chương trình 
pdf 77 trang thiennv 08/11/2022 2400
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Kiến trúc máy tính - Chương 2: Kiến trúc bộ lệnh - Hà Lê Hoài Trung", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfbai_giang_kien_truc_may_tinh_chuong_2_kien_truc_bo_lenh_ha_l.pdf

Nội dung text: Bài giảng Kiến trúc máy tính - Chương 2: Kiến trúc bộ lệnh - Hà Lê Hoài Trung

  1. CE Toán hạng Có 3 loại toán hạng: 1. Toán hạng thanh ghi (Register Operands) 2. Toán hạng bộ nhớ (Memory Operands) 3. Toán hạng hằng (Constant or Immediate Operands) 11
  2. CE Toán hạng Toán hạng thanh ghi:  Không giống như các chương trình trong ngôn ngữ cấp cao, các toán hạng của các lệnh số học bị hạn chế, chúng phải đặt trong các vị trí đặc biệt được xây dựng trực tiếp trong phần cứng được gọi là thanh ghi (số lượng thanh ghi có giới hạn: MIPS-32, ARM Cortex A8-40).  Kích thước của một thanh ghi trong kiến ​​trúc MIPS là 32 bit; nhóm 32 bit xuất hiện thường xuyên nên chúng được đặt tên là “từ” (word) trong kiến ​​trúc MIPS. (lưu ý: một “từ” trong kiến trúc bộ lệnh khác có thể không có 32 bit)  Một sự khác biệt lớn giữa các biến của một ngôn ngữ lập trình và các biến thanh ghi là số giới hạn thanh ghi, thường là 32 trên các máy tính hiện nay. 12
  3. CE Toán hạng Các thanh ghi trong MIPS: 13
  4. CE Toán hạng Toán hạng bộ nhớ (1):  Bộ vi xử lý chỉ có thể giữ một lượng nhỏ dữ liệu trong các thanh ghi, trong khi bộ nhớ máy tính chứa hàng triệu dữ liệu.  Với lệnh MIPS, phép tính số học chỉ xảy ra trên thanh ghi, do đó, MIPS phải có các lệnh chuyển dữ liệu giữa bộ nhớ và thanh ghi. Lệnh như vậy được gọi là lệnh chuyển dữ liệu. Lệnh chuyển dữ liệu: Một lệnh di chuyển dữ liệu giữa bộ nhớ và thanh ghi  Để truy cập vào một từ trong bộ nhớ, lệnh phải cung cấp địa chỉ bộ nhớ. Địa chỉ: Một giá trị sử dụng để phân định vị trí của một phần tử dữ liệu cụ thể trong một mảng bộ nhớ. 14
  5. CE Toán hạng Toán hạng bộ nhớ (2):  Bộ nhớ chỉ là một mảng đơn chiều lớn, với địa chỉ đóng vai trò là chỉ số trong mảng đó, bắt đầu từ 0. Ví dụ, trong hình 2, địa chỉ của phần tử thứ ba là 2, và giá trị của bộ nhớ [2] là 10. Hình 2: Địa chỉ bộ nhớ và nội dung Hình 3: Địa chỉ bộ nhớ MIPS thực tế và nội dung của bộ nhớ ở những địa chỉ. của bộ nhớ cho những từ đó. Đây là một sự đơn giản hóa của địa Các địa chỉ thay đổi được đánh dấu xanh để tương chỉ MIPS; Hình 3 cho thấy địa chỉ phản với Hình 2. Từ địa chỉ MIPS trên mỗi byte, địa MIPS thực tế cho các địa chỉ các từ chỉ từ là bội của bốn: có bốn byte trong một từ. tuần tự trong bộ nhớ. 15
  6. CE Toán hạng Toán hạng bộ nhớ (3):  Lệnh chuyển dữ liệu từ bộ nhớ vào thanh ghi gọi là load (viết tắt lw-load word). Định dạng của các lệnh nạp: lw $s1,20($s2) offset Địa chỉ cơ sở trong một thanh ghi • $s1: thanh ghi được nạp dữ liệu vào. • Một hằng số (20) và thanh ghi ($s2) được sử dụng để truy cập vào bộ nhớ. Tổng số của hằng số và nội dung của thanh ghi thứ hai là địa chỉ bộ nhớ của phần tử cần truy cập đến. 16
  7. CE Toán hạng Toán hạng bộ nhớ (4): Ví dụ về lệnh nạp: Giả sử rằng A là một mảng của 100 từ và trình biên dịch đã kết hợp các biến g và h với các thanh ghi $s1 và $s2 như trước. Giả định rằng địa chỉ bắt đầu của mảng A (hay địa chỉ cơ sở) chứa trong $s3. Hãy biên dịch đoạn lệnh bằng ngôn ngữ C sau: g = h + A[8]; Thực tế trong MIPS, 1 Biên dịch: từ là 4 bytes lw $ t0, 32($s3) lw $t0, 8($s3) # $t0 nhận A[8] add $s1,$s2,$t0 # g = h + A[8]  Hằng số trong một lệnh truyền dữ liệu (8) được gọi là offset, và thanh ghi thêm vào để tạo thành địa chỉ ($s3) được gọi là thanh ghi cơ sở. 17
  8. CE Toán hạng Toán hạng bộ nhớ (5):  Qui định sắp xếp: - Trong MIPS, các từ phải bắt đầu từ địa chỉ là bội số của 4. Yêu cầu này được gọi là một Qui định sắp xếp (alignment restriction), và nhiều kiến ​​trúc có nó. (giúp việc truyền dữ liệu nhanh hơn). - Máy tính phân chia thành đánh số byte trong 1 từ từ trái sang phải (leftmost hay “big en”) so với đánh số byte trong 1 từ từ phải sang trái (rightmost hay “litle end”). MIPS thuộc dạng Big Endian. 18
  9. CE Toán hạng Toán hạng bộ nhớ (6):  Lệnh lưu (sw - Store Word) dữ liệu từ thanh ghi vào bộ nhớ. Định dạng của một lệnh lưu là: sw $s1,20($s2) offset Địa chỉ cơ sở trong 1 thanh ghi cơ sở • $s1: thanh ghi chứa dữ liệu cần lưu. • Một hằng số (20) và thanh ghi ($s2) được sử dụng để truy cập vào bộ nhớ. 19
  10. CE Toán hạng Toán hạng bộ nhớ (7): Ví dụ lệnh sw: Giả sử biến h được kết nối với thanh ghi $s2 và địa chỉ cơ sở của mảng A là trong $s3. Biên dịch câu lệnh C thực hiện dưới đây sang MIPS? A[12] = h + A[8]; Biên dịch: lw $t0,32($s3) # $t0 = A[8] add $t0,$s2,$t0 # $t0 = h + A[8] sw $t0,48($s3) # A[12] = $t0 20
  11. CE Toán hạng Toán hạng hằng: Nhiều khi một chương trình sẽ sử dụng một hằng số trong một phép toán Ví dụ: addi $s3, $s3, 4 # $s3 = $s3 + 4 Toán hạng hằng Lưu ý:  Mặc dù thanh ghi MIPS xem xét ở đây là 32 bit, có một phiên bản 64-bit của lệnh MIPS thiết lập với thanh ghi 64-bit. Để giữ cả phiên bản cũ, chúng đang chính thức được gọi là MIPS-32 và MIPS-64. (ta quan tâm tập hợp con của MIPS-32) Từ khi MIPS hỗ trợ hằng số âm, không có nhu cầu trừ ngay lập tức trong MIPS. 21
  12. CE Ví dụ  Xác định toán hạng: bộ nhớ, thanh ghi, hằng. 22
  13. CE Ví dụ  The following problems deal with translating from C to MIPS. Assume that the variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, respectively. Assume that the base address of the arrays A and B are in registers $s6 and $s7, respectively. Assume that the elements of the arrays A and B are 4-byte words:  For the C statements above, what is the corresponding MIPS assembly code? 23
  14. CE Chương 02 – Kiến trúc bộ lệnh 1. Giới thiệu 2. Các phép tính 3. Toán hạng 4. Số có dấu và không dấu 5. Biểu diễn lệnh 6. Các phép tính Logic 7. Các lệnh điều kiện và nhảy 8. Chuyển đổi và bắt đầu một chương trình 24
  15. CE Số có dấu và không dấu  Con người được dạy để suy nghĩ trong hệ cơ số 10, nhưng con số có thể được biểu diễn trong bất kỳ cơ số nào. Ví dụ, 123 cơ số 10 = 1.111.011 cơ số 2.  Con số này được giữ trong phần cứng máy tính như một loạt các tín hiệu điện thế cao và thấp và do đó chúng được coi là hệ cơ số 2. Ví dụ: Hình vẽ dưới đây cho thấy số bit trong một từ MIPS và vị trí của các số 1011: Từ MIPS có 32 bit độ dài, do đó biểu diễn các số từ 0 đến 232-1 (4.294.967.295)  Bit nhỏ nhất: Bit ngoài cùng bên phải trong một từ MIPS (bit 0) Bit lớn nhất: Bit ngoài cùng bên trái trong một từ MIPS (bit 31) 25
  16. CE Số có dấu và không dấu Số dương và âm trong máy tính: Sử dụng bù 2 biểu diễn Số đầu tiên là '0 'có nghĩa là dương, số đầu tiên là '1' có nghĩa là âm. 26
  17. CE Số có dấu và không dấu 31 Nửa phần dương của các con số, từ 0 đến 2,147,483,647ten (2 – 1), biểu diễn như thường. Phần số âm biểu diễn: 1000 0000two = -2,147,483,648ten 1000 0001two = -2,147,483,647ten 1111 1111two = -1ten Bit thứ 32 được gọi là bit dấu. Chúng có thể biểu diễn các số dương và âm 32-bit trong điều kiện bit giá trị là một lũy thừa của 2. Bù hai có một số âm -2,147,483,648ten , mà không có số dương tương ứng. Mỗi máy tính ngày nay sử dụng bù hai để biểu diễn nhị phân cho số có dấu. Một cách tính giá trị của số không cần đổi sang bù 2 của số âm: Lưu ý: Bit dấu được nhân với -231, và phần còn lại của các bit sau đó được nhân với các số dương của các giá trị cơ số nào tương ứng của chúng. 27
  18. CE Số có dấu và không dấu Ví dụ: đổi từ hệ 2 sang hệ 10 Trả lời: 28
  19. CE Số có dấu và không dấu Mở rộng số có dấu: Làm thế nào để chuyển đổi một số nhị phân được biểu diễn trong n bit thành một số biểu diễn với nhiều hơn n bit? Ví dụ: Chuyển đổi số nhị phân 16-bit của số 2ten và -2ten thành số nhị phân 32-bit. 2ten: -2ten: 29
  20. CE Ví dụ  The following problems explore number conversions from signed and unsigned binary numbers to decimal numbers – For the patterns above, what base 10 number does the binary number represent, assuming that it is a two’s complement integer – For the patterns above, what base 10 number does the binary number represent, assuming that it is an unsigned integer – For the patterns above, what hexadecimal number does it represent? 30
  21. CE  The following problems explore number conversions from decimal to signed and unsigned binary numbers – For the base ten numbers above, convert to 2’s complement binary – For the base ten numbers above, convert to 2’s complement hexadecimal. 31
  22. CE Chương 02 – Kiến trúc bộ lệnh 1. Giới thiệu 2. Các phép tính 3. Toán hạng 4. Số có dấu và không dấu 5. Biểu diễn lệnh 6. Các phép tính Logic 7. Các lệnh điều kiện và nhảy 8. Chuyển đổi và bắt đầu một chương trình 32
  23. CE Biểu diễn lệnh  Làm thế nào một lệnh (add $t0, $s1, $s2) lưu giữ được trong máy tính? Máy tính chỉ có thể làm việc với các tín hiệu điện tử thấp và cao, do đó một lệnh lưu giữ trong máy tính phải được biểu diễn như là một chuỗi của "0" và "1", được gọi là mã máy/ lệnh máy.  Ngôn ngữ máy: biểu diễn nhị phân được sử dụng để giao tiếp trong một hệ thống máy tính. Để chuyển đổi từ một lệnh sang mã máy, sử dụng định dạng lệnh. Định dạng lệnh: Một hình thức biểu diễn của một lệnh bao gồm các trường của số nhị phân. Ví dụ một định dạng lệnh: 33
  24. CE Biểu diễn lệnh  Ví dụ: Chuyển đổi một lệnh MIPS cộng thành một lệnh máy: add $t0,$s1,$s2 Với định dạng lệnh: 34
  25. CE Biểu diễn lệnh  Trả lời: Chuyển đổi một lệnh MIPS cộng thành một lệnh máy: add $t0,$s1,$s2 Với định dạng lệnh: Tra trong bảng MIPS reference data để có các giá trị cần thiết . Trong ngôn ngữ assembly MIPS, thanh ghi $s0 đến $s7 tương ứng vào thanh ghi 16 đến 23, và thanh ghi $t0 đến $t7 tương ứng vào thanh ghi 8 đến 15 . Mỗi phân đoạn của một định dạng lệnh được gọi là một trường. . Các trường đầu tiên và cuối cùng (add có phần opcode và Function tương ứng với 0/20hex) kết hợp báo cho máy tính rằng lệnh MIPS này thực hiện phép cộng. . Trường thứ hai cho biết số thanh ghi đó là toán hạng nguồn đầu tiên của phép toán cộng ($s1 là thanh ghi số 17) . Trường thứ ba cung cấp cho các toán hạng nguồn khác cho phép cộng ($s2 là thanh ghi số 18). . Trường thứ tư là thanh ghi đích để nhận được tổng ($t0 là thanh ghi số 8). . Trường thứ năm là không sử dụng trong lệnh này, vì vậy nó được thiết lập là 0. 35
  26. CE Biểu diễn lệnh Các dạng khác nhau của định dạng lệnh MIPS : . R-type(cho thanh ghi) or R-format . I-type (cho tức thời) hoặc I-format và sử dụng bởi lệnh truyền dữ liệu trực tiếp (tức thời) . J-type (lệnh nhảy, lệnh ra quyết định) hoặc J-format 36
  27. CE Biểu diễn lệnh Trường MIPS của R-format: Các trường MIPS được đặt tên để làm cho chúng dễ nhớ hơn: . op: theo truyền thống được gọi là mã tác vụ. Opcode: Trường biểu thị phép toán và định dạng của một lệnh. . rs: Thanh ghi đầu tiên toán hạng nguồn. . rt: Thanh ghi thứ hai toán hạng nguồn. . rd: Thanh ghi toán hạng đích. Nó nhận kết quả của các phép toán. . shamt: số lượng bit dịch chuyển được dùng trong các câu lệnh dịch bit (shift). (không được sử dụng sẽ chứa 0.) . funct: Chức năng. Lĩnh vực này lựa chọn phiên bản cụ thể của các hoạt động trong lĩnh vực op và đôi khi được gọi là mã chức năng. 37
  28. CE Biểu diễn lệnh Trường MIPS của I-format: Địa chỉ 16-bit có nghĩa là một lệnh có thể truy cập đến một địa chỉ bằng giá trị trong thanh ghi rs cộng với số 16 bit này. 38
  29. CE Biểu diễn lệnh Hình sau: cho thấy mỗi trường cho 1 vài lệnh MIPS Fig.6 MIPS instruction encoding. . “reg” nghĩa là số thanh ghi giữa 0 và 31. . “address” nghĩa là 1 địa chỉ 16-bit. . “n.a.” (không áp dụng) nghĩa là trường này không xuất hiện trong định dạng này. . Lưu ý rằng lệnh "cộng" và "trừ" có cùng giá trị trong trường "op"; phần cứng sử dụng trường "funct" để quyết định các biến thể của các phép toán: "cộng" (32) hoặc "trừ" (34) . 39
  30. CE Biểu diễn lệnh  Ví dụ: Chuyển ngôn ngữ cấp cao asembly mã máy: Nếu $t1 chứa địa chỉ cơ sở của mảng A và $s2 tương ứng với h, câu lệnh gán: A[300] = h + A[300]; Được chuyển thành: lw $t0,1200($t1) # Tạm thời reg $t0 nhận A[300] add $t0,$s2,$t0 # Tạm thời reg $t0 nhận h + A[300] sw $t0,1200($t1) # Lưu h + A[300] trở lại vào A[300] Mã máy ngôn ngữ MIPS cho ba lệnh trên: 40
  31. CE Biểu diễn lệnh Kết luận: 1. Các lệnh được biểu diễn như là các con số. 2. Chương trình được lưu trữ trong bộ nhớ được đọc hay viết giống như các con số. . Xem lệnh như là dữ liệu là cách tốt nhất để đơn giản hóa cả bộ nhớ và phần mềm của máy tính. . Để thực hiện một chương trình, bạn chỉ cần nạp chương trình và dữ liệu vào bộ nhớ và sau đó báo với máy tính để bắt đầu thực hiện tại một vị trí nhất định trong bộ nhớ. 41
  32. CE Ví dụ  In the following problems, the data table contains bits that represent the opcode of an instruction. You will be asked to interpret the bits as MIPS instructions into assembly code and determine what format of MIPS instruction the bits represent:  For the binary entries above, what instruction do they represent?  What type (I-type, R-type) instruction do the binary entries above represent?  If the binary entries above were data bits, what number would they represent in hexadecimal? 42
  33. CE Ví dụ  In the following problems, the data table contains MIPS instructions. You will be asked to translate the entries into the bits of the opcode and determine the MIPS instruction format.  For the instructions above, show the binary then hexadecimal representation of these instructions.  What type (I-type, R-type) instruction do the instructions above represent? 43
  34. CE Chương 02 – Kiến trúc bộ lệnh 1. Giới thiệu 2. Các phép tính 3. Toán hạng 4. Số có dấu và không dấu 5. Biểu diễn lệnh 6. Các phép tính Logic 7. Các lệnh điều kiện và nhảy 8. Chuyển đổi và bắt đầu một chương trình 44
  35. CE Các phép tính Logic Hình 7: C và Java các phép tính logic và lệnh MIPS tương ứng. . Shift: Lệnh dịch chuyển bit. . AND: là phép toán logic “VÀ”. . OR: là một phép toán logic “HOẶC” . NOT: kết quả là 1 nếu bit đó là 0 và ngược lại. . NOR: NOT OR. . Hằng số rất hữu ích trong các phép toán logic AND và OR cũng như trong phép tính số học, vì vậy MIPS cung cấp các lệnh trực tiếp andi và ori. 45
  36. CE Ví dụ  In the following problems, the data table contains the values for registers $t0 and $t1. You will be asked to perform several MIPS logical operations on these registers.  For the lines above, what is the value of $t2 for the following sequence of instructions? sll $t2, $t0, 4 or $t2, $t2, $t1 46
  37. CE Ví dụ  In the following problems, the data table contains the values for registers $t0 and $t1. You will be asked to perform several MIPS logical operations on these registers.  For the values in the table above, what is the value of $t2 for the following sequence of instructions? sll $t2, $t0, 4 andi $t2, $t2, –1 47
  38. CE Ví dụ  In the following problems, the data table contains the values for registers $t0 and $t1. You will be asked to perform several MIPS logical operations on these registers.  For the lines above, what is the value of $t2 for the following sequence of instructions? srl $t2, $t0, 3 andi $t2, $t2, 0xFFEF 48
  39. CE Chương 02 – Kiến trúc bộ lệnh 1. Giới thiệu 2. Các phép tính 3. Toán hạng 4. Số có dấu và không dấu 5. Biểu diễn lệnh 6. Các phép tính Logic 7. Các lệnh điều kiện và nhảy 8. Chuyển đổi và bắt đầu một chương trình 49
  40. CE Các lệnh điều kiện và nhảy Một máy tính (PC) khác với các máy tính tay (calculator) chính là dựa trên khả năng đưa ra quyết định.  Trong ngôn ngữ lập trình, đưa ra quyết định thường được biểu diễn bằng cách sử dụng câu lệnh “if”, đôi khi kết hợp với câu lệnh “go to”.  Ngôn ngữ Assembly MIPS bao gồm hai lệnh ra quyết định, tương tự với câu lệnh "if" và “go to". Ví dụ: beq register1, register2, L1 Lệnh này có nghĩa là đi đến câu lệnh có nhãn L1 nếu giá trị trong thanh ghi 1 bằng trong thanh ghi 2. Từ beq là viết tắt của “branch if equal” (rẽ nhánh nếu bằng) Các lệnh như vậy được gọi là lệnh rẽ nhánh có điều kiện. 50
  41. CE Các lệnh điều kiện và nhảy Các lệnh rẽ nhánh có điều kiện của MIPS: 51
  42. CE Các lệnh điều kiện và nhảy  Biên dịch if-then-else thành nhánh có điều kiện: Trong đoạn mã sau đây f, g, h, i và j là các biến. Nếu năm biến f đến j tương ứng với 5 thanh ghi $s0 đến $s4, mã MIPS biên dịch cho câu lệnh if này là gì? if (i == j) f = g + h; else f = g – h;  Trả lời: bne $s3,$s4,Else # go to Else if i != j add $s0, $s1, $s2 # f = g + h (skipped if i != j) j exit # go to Exit Else: sub $s0, $s1, $s2 # f = g – h (skipped if i = j) exit: 52
  43. CE Các lệnh điều kiện và nhảy  Biên dịch 1 vòng lặp while trong C Đây là 1 vòng lặp truyền thống trong C: while (save[i] == k) i += 1; Giả định rằng i và k tương ứng với thanh ghi $s3 và $s5 và địa chỉ cơ sở của mảng save lưu trong $s6. Mã assembly MIPS tương ứng với đoạn mã C này là gì?  Trả lời: Loop: sll $t1,$s3,2 # Temp reg $t1 = 4 * i add $t1,$t1,$s6 # $t1 = address of save[i] lw $t0,0($t1) # Temp reg $t0 = save[i] bne $t0,$s5, Exit # go to Exit if save[i] != k addi $s3,$s3,1 # i = i + 1 j Loop # go to Loop Exit: 53
  44. CE Ví dụ  For these problems, the table holds various binary values for register $t0. Given the value of $t0, you will be asked to evaluate the outcome of different branches.  Suppose that register $t0 contains a value from above, $t1 = 5. What is the value of $t2 after the following instructions? slt $t2, $t1, $t0 bne $t2, 0, ELSE j DONE ELSE: addi $t2, $t2, 2 DONE: 54
  45. CE Ví dụ  For these problems, the table holds various binary values for register $t0. Given the value of $t0, you will be asked to evaluate the outcome of different branches.  Suppose that register $t0 contains a value from above. What is the value of $t2 after the following instructions? slt $t2, $t0, $0 55
  46. CE Chương 02 – Kiến trúc bộ lệnh 1. Giới thiệu 2. Các phép tính 3. Toán hạng 4. Số có dấu và không dấu 5. Biểu diễn lệnh 6. Các phép tính Logic 7. Các lệnh điều kiện và nhảy 8. Các thủ tục hỗ trợ trong phần cứng máy tính 9. Giải pháp cho địa chỉ và biến immediates 32-bit trong kiến trúc MIPS 10. Chuyển đổi và bắt đầu một chương trình 56
  47. CE Các Thủ Tục Hỗ Trợ Trong Phần Cứng Máy Tính  Một thủ tục hay một hàm là một công cụ mà lập trình viên sử dụng để xây dựng cấu trúc của những chương trình, với mục đích vừa làm cho các chương trình đó dễ hiểu hơn vừa làm cho mã nguồn của các chương trình này có thể được tái sử dụng.  Các thủ tục này cho phép lập trình viên tại một thời điểm chỉ cần tập trung vào một phần của công việc (task) .  Để thực thi một thủ tục, chương trình phải tuân theo sáu bước sau: 1. Đặt các tham số ở một nơi mà thủ tục có thể truy xuất được. 2. Chuyển quyền điểu khiển cho thủ tục. 3. Yêu cầu tài nguyên lưu trữ cần thiết cho thủ tục đó. 4. Thực hiện công việc (task). 5. Lưu kết quả ở một nơi mà chương trình có thể truy xuất được. 6 Trả điều khiển về vị trị mà thủ tục được gọi. Vì một thủ tục có thể được gọi từ nhiều vị trí trong một chương trình. 57
  48. CE Các Thủ Tục Hỗ Trợ Trong Phần Cứng Máy Tính  Thanh ghi (Registers) là loại bộ nhớ có tốc độ truy xuất nhanh nhất được dùng để lưu trữ dữ liệu trong một máy tính, cho nên chúng ta muốn tận dụng chúng một cách tối đa Các phần mềm theo kiến trúc MIPS tuân theo các quy ước về việc gọi thủ tục trong việc cấp phát các thanh ghi 32 bit của nó như sau: ■ $a0-@a3 : là 4 thanh ghi lưu tham số được dùng để truyền tham số. ■ $v0-$v1: là 2 thanh ghi giá trị được dùng để lưu giá trị trả về. ■ $ra: là 1 thanh ghi chứa giá trị địa chỉ để trở về vị trí gọi hàm. 58